
Using Aggregation for Adaptive Super-Peer

Discovery on the Gradient Topology

Jan Sacha, Jim Dowling, Raymond Cunningham and René Meier

Distributed Systems Group, Trinity College, Dublin
{jsacha, jdowling, rcnnnghm, rmeier}@cs.tcd.ie

Abstract. Peer-to-peer environments exhibit a very high diversity in in-
dividual peer characteristics ranging by orders of magnitude in terms of
uptime, available bandwidth, and storage space. Many systems attempt
to exploit this resource heterogeneity by using the best performing and
most reliable peers, called super-peers, for hosting system services. How-
ever, due to inherent decentralisation, scale, dynamism, and complexity
of P2P environments, self-managing super-peer selection is a challenging
problem. In this paper, decentralised aggregation techniques are used to
reduce the uncertainty about system properties by approximating the
peer utility distribution allowing peers to calculate adaptive thresholds
in order to discover appropriate super-peers. Furthermore, a heuristic
search algorithm is described that allows super-peers, above a certain
utility threshold, to be efficiently discovered and utilised by any peer in
the system.1

1 Introduction

Measurements on deployed peer-to-peer (P2P) systems show that the distribu-
tions of peer characteristics such as the uptime, bandwidth, or available storage
space, are highly skewed and often follow heavy-tailed distribution [1,2,3]. Re-
searchers have also reported that the use of low stability or low performance
peers can lead to poor performance in a P2P system [4,5]. Consequently, in
order to improve the system efficiency, many P2P systems attempt to assign
most important services to selected, high capability peers, called super-peers

[6,7,8,9,10].
However, super-peer election in P2P environments poses a number of difficult

problems. Due to the massive scale, dynamism, and complexity of P2P systems,
it is not feasible for a peer or any other entity to maintain a global view of the
system. Inherent decentralisation of P2P environments introduces uncertainty
in decision making. Traditional election algorithms, such as the Bully algorithm
[11], and other classical approaches to group communication [12], potentially
require communication with all peers in the system, and can only be applied
to small clusters of peers. Other approaches to super-peer discovery, based on

1 This work was supported by the European Union funded ”Digital Business Ecosys-
tem” Project IST-507953.

flooding or random walking [13], are difficult in large P2P systems due to high
communication overhead that increases as the size of the P2P system grows. So-
lutions based on manual or static configuration of super-peers are inappropriate
due to a lack of system-wide knowledge of peer properties.

This paper proposes a decentralised and self-managing approach to super-
peer discovery based on gossipping. The paper introduces a peer utility metric
in section 3 and applies a decentralised aggregation algorithm, covered in sec-
tion 4, that generates a utility histogram in order to estimate the distribution
of peer utility in the system. In section 5, a self-organising gradient topology is
constructed based on the utility metric that allows peers to apply an efficient
search heuristic for super-peer discovery described in section 6. The utility his-
togram is used for adaptive super-peer criteria selection. The presented approach
is evaluated in section 7 and this evaluation shows that the aggregation algo-
rithm provides a good approximation of peer utility distribution and that the
search heuristic based on the utility metric achieves high search performance
(significantly better than random walking). Section 8 concludes the paper.

2 Related Work

Recent research on P2P systems has been primarily focused on Distributed Hash
Tables [14,15,16,17], where the main goal is to provide efficient routing between
any pair of peers. In our approach, we are focusing on searching for peers with
particular properties in the system (high utility), and assuming that system
services are placed on these peers, we provide a mechanism that allows the
efficient discovery and consumption of these services. Furthermore, DHTs assume
that peer identifiers are unique and relatively static, uniformly distributed in a
key space. In our approach, the utility is dynamic and may follow any distribution
with multiple peers potentially having the same utility value.

A number of P2P systems based on super-peers have been proposed. Yang
and Molina [6] investigate general principles of designing super-peer-based net-
works, however, they do not provide any specific super-peer election algorithm.
OceanStore [18] proposes to elect a primary tier “consisting of a small number of
replicas located in high-bandwidth, high connectivity regions of the network” for
the purpose of handling updates, however, no specific algorithm for the election
of such a tier is presented. Brocade [8] improves routing efficiency in a DHT by
exploiting resource heterogeneity, but unlike our approach, it does not address
the super-peer election problem.

Chord [14,10] shows that the load between peers can be balanced by assigning
multiple virtual servers to high performance physical hosts. The DHT structure
may be used for the discovery of under- or over-loaded peers using random

sampling, distributed directories, and other similar techniques. Mizrak et al [9]
proposes the use of high capacity super-peers to improve routing performance in
a DHT. However, these systems focus on load balancing in a DHT rather than
the selection of potential super-peers from the set of all peers in the system.

Montresor [7] proposes a protocol for super-peer overlay generation, however,
unlike our gradient topology, his topology maintains a discrete (binary) distinc-
tion between super-peers and client peers. In contrast, our approach introduces a
continuous peer utility spectrum and approximates the distribution of peer util-
ity in the system in order to discover peers above an adaptive utility threshold.
Our neighbour selection algorithm can be seen as a special case of the T-Man
protocol [19] that generates a gradient topology, where the ranking function is
based on our peer utility metric. The advantage of such a utility ranking func-
tion is that applications can exploit the constructed topology in order to elect
appropriate super-peers.

Kempe et al [20] describes a push-based gossip algorithm for the computa-
tions of sums, averages, random samples, and quantiles, and provides a theoreti-
cal analysis of the algorithm. Montresor, Jelasity and Babaoglu [21,22] introduce
a push-pull-based approach for aggregate computation, however, their model as-
sumes that message exchange between any two peers is atomic and that the
clocks of peers are synchronised. We have extended Kempe’s algorithm to cal-
culate histograms, and we have added a peer leave procedure that improves the
behaviour of the algorithm in the face of peer churn. We are using the aggregates
for adaptive super-peer threshold calculation.

3 Peer Utility

This section introduces peer utility as a metric that captures the application-
specific requirements and measures the capability of a peer to become a super-
peer. Depending on the domain, the utility metric may involve a number of
parameters. For example, in a P2P storage system, the utility may place greater
emphasis on a peer’s available local storage space and bandwidth. In a mul-
timedia streaming application, the utility may combine a peer’s latency and
bandwidth, while in a grid computing system the utility may be a function of a
peer’s CPU load and availability.

A simple approach to utility calculation would be for each peer to individu-
ally compute their own utility. A more sophisticated utility metric may involve
feedback from neighbouring peers. In either case, the utility of a peer is a local
or microscopic property of a peer (or neighbourhood of peers). In an untrusted
environment, a decentralised approach to trust may be adopted to prevent ma-
licious peers from providing fake utility information about themselves.

Given that the utility of each peer in the topology can be calculated by a
common function U(), the selection of super peers then becomes a question of
how can an individual peer discover a high utility peer. In one possible approach,
a peer may search for a super-peer above an absolute utility value. However, in
many other applications, before a peer attempts to discover a high utility peer,
the peer needs to estimate the distribution of peer utility in the system in or-
der to know what constitutes high utility in a running system. For example,
if an application requires the selection of the most stable peers in the system,
it needs to learn the peer stability characteristics before it can decide on the

stability threshold for a super-peer. Otherwise, if the super-peer threshold is
static (hardwired), it may happen that no peer in the system satisfies the crite-
ria, or that the threshold is very low and hence sub-optimal. Moreover, due to
the system’s dynamism, the super-peer selection criteria has to be continuously
adapted to the system’s current state and peer availability.

In the remainder of this paper, we describe a set of algorithms that provide
solutions to the problems highlighted above. A decentralised aggregation tech-
nique is shown that allows peers to estimate the distribution of peer utility in
the system and from this to identify an adaptive super-peer selection threshold.
The gradient topology and gradient search heuristic are shown that enable the
efficient discovery of (super)peers above a given utility threshold.

4 Aggregation Algorithm

Our approach to aggregation is based on the algorithms described by Kempe
[20] and Montresor [21]. We adopt a push-based gossip model, since it can be
implemented using asynchronous message passing and does not require synchro-
nisation between peers.

In our approach, each peer continuously maintains estimates of a number of
system properties by gossipping with neighbours. A peer, p , has an estimate of
the current number of peers in the system, Np , the maximum peer utility in the
system, Maxp, and a cumulative histogram of peer utility values, Hp. Each of
these values approximate the true system properties N∗, Max∗, and H∗. The
cumulative utility histogram with B bins of width w is defined as

H(i) =
∣

∣

∣
{p | U(p) ≥ i · w}

∣

∣

∣
(1)

for 1 ≤ i ≤ B. Parameter B is also called the histogram resolution. The
histogram is a discrete approximation of the peer utility distribution in B points,
where each bin corresponds to a single point of the distribution function.

Peers joining the network contact any peer already in the system and obtain
an initial set of neighbours and a current approximation of N∗, Max∗, and H∗.
A newly joining peer has minimum utility, which is zero, and the maximum
utility of any peer is unbounded. The number of histogram bins, B, is constant
in the algorithm.

Peers periodically execute a gossip-based algorithm, where at one step (or
round) of the algorithm a peer can send (push) messages to a number of neigh-
bours and receive messages sent by its neighbours in the previous round. A
sequence of steps that leads to a new approximation of N∗, Max∗, and H∗ is
called an aggregation epoch. An epoch can be potentially initiated by any peer
at any time step, and the information about the newly created epoch is grad-
ually propagated to all peers in the system. In order to distinguish between
different, possibly overlapping, epochs, each epoch is tagged by a unique identi-
fier selected by the initiating peer. Every peer p maintains a cache cachep that
stores the identifiers of aggregation epochs that this peer has participated in.

The duration of an epoch is delimited by a time-to-live value. At the end of an
epoch, every peer p updates its estimates Np, Maxp, and Hp.

Algorithm 1: Aggregation algorithm at a peer p at round t.

with probability 1
F ·Np

send message
(

rand(), TTL, 1, 0, 0,
Maxp

B
, 0

)

to self1

forall epoch identifiers id do2

let {mi}id be messages received at round t − 1 with epoch identifier id3

M ← |{mi}id|4

let (idi, ttli, wi, ni, maxi, hwi, hi) be mi5

ttl ←
∑M

i=1
ttli
M

6

w ←
∑M

i=1
wi7

n ←
∑M

i=1
ni8

max ←max(maxi)9

for 1 ≤ j ≤ B do10

h(j) ←
∑M

i=1
hi(j)11

end12

if id /∈ cachep then13

n ← n + 114

max ←max(U(p), max)15

for 1 ≤ j ≤ bU(p)
hw

c do16

h(j) ← h(j) + 117

end18

end19

cachep ← cachep ∪ {id}20

if ttl < 1 then21

Np ← n
w

22

Maxp ← max23

Hp(j) ← h(j)
w

24

end25

else26

m ← (id, ttl − 1, w
2
, n

2
, max, hw, h)27

send m to a random neighbours and to self28

end29

end30

Fig. 1. Aggregation algorithm at peer p at time t.

The algorithm performed at each step by a peer p is shown in Figure 1. In
line 1, peer p starts a new aggregation epoch with probability 1

F ·Np
. Thus, a new

epoch is started by the system with average frequency 1

F
(every F time steps).

The epoch is initiated by creating an aggregation message with a new epoch
id and a weight w = 1, as specified by Kempe. The ttl field is initialised with
an O(log(Np)) value, since informally speaking, the propagation speed of push-
based epidemics is exponential and requires only O(log(Np)) steps with high

probability to reach all N peers in the system [20]. The histogram bin width

is calculated as hw =
Maxp

B
. Furthermore, aggregation messages include a field

used to estimate N∗ labelled n, a field used to estimate Max∗ labelled max, and
finally, a histogram, h, consisting of B entries representing individual histogram
bins. By combining all aggregation information in one message, the algorithm
reduces the total number of messages generated, and thus limits the network
traffic generated. For a 100-bin histogram, the aggregation message size is below
1KB.

In lines 2-12 of Figure 1, a peer performs the aggregation of received messages.
A peer that receives an aggregation message with a new epoch identifier, i.e.,
with an id field that is not stored in the cache, joins this new aggregation (lines
13-20) by adding the value of 1 to its n field and to all histogram bins according to
formula (1). If the ttl value is less than 1 (indicating the end of the epoch), a peer
updates its current estimates of the system properties (lines 21-25). Otherwise,
the peer emits a message to a random neighbour and to itself so that this peer
will continue to participate during the next aggregation round (lines 26-30).

The algorithm exhibits the property of mass conservation defined by Kempe
[20] provided that no peers fail during an aggregation epoch. At any time step,
for each aggregation epoch, the sum of the weights of all aggregation messages in
the system is always equal to one, i.e.,

∑N
i=1

wi = 1. Furthermore, the sum of n

fields of all messages is equal to the number of peers participating in the aggre-
gation, the maximum of max fields is equal to the maximum utility among peers
participating in the aggregation, the average value of ttl fields of all messages at
subsequent rounds decreases by one, and for 1 ≤ j ≤ B,

∑N

i=1
hi(j) = H∗(j),

where H∗ is the utility histogram for peers participating in the aggregation.

In order to ensure mass conservation, each peer leaving the system is required
to perform a leave procedure shown in Figure 2. In lines 1-11 of this figure, a
peer aggregates currently buffered messages (as in lines 2-12 of Figure 1). In lines
12-15 of Figure 2, the peer subtracts the value of 1 from the n field and from
the histogram bins. Finally, in lines 16-18, the peer sends a message containing
the aggregated values to a random neighbour.

During one round of the aggregation algorithm, each peer participating in an
epoch generates one aggregation message. The epochs are initiated on average
every F rounds (frequency 1

F
), and since each epoch lasts on average TTL

rounds, the average number of aggregation messages generated and received
by each peer in one round is bounded by O(TTL

F
), or O(1

F
log(N)) if TTL is

O(log(N)).

5 Gradient Topology

In this section, we introduce the self-organising gradient P2P topology and we
outline its main properties. We briefly discuss the neighbour selection algorithm
that generates the gradient topology. The topology is exploited by the gradient
search heuristic.

Algorithm 2: Leave procedure at peer p

forall epoch identifiers id do1

let {mi}id be all currently buffered messages with epoch identifier id2

M ← |{mi}id|3

let (idi, ttli, wi, ni, maxi, hwi, hi) be mi4

ttl ←
∑M

i=1
ttli
M

5

w ←
∑M

i=1
wi6

n ←
∑M

i=1
ni7

max ←max(maxi)8

for 1 ≤ j ≤ B do9

h(j) ←
∑M

i=1
hi(j)10

end11

n ← n − 112

for 1 ≤ j ≤ bU(p)
hw

c do13

h(j) ← h(j) − 114

end15

m ← (id, ttl − 1, w, n, max, hw, h)16

send m to a random neighbour17

end18

Fig. 2. Leave procedure at peer p.

The gradient topology is a P2P topology where the highest utility peers are
connected with each other and form a core in the system, while lower utility
peers are located gradually farther from the core. The core, which clusters the
highest utility peers in the system, corresponds to a set of super-peers in the
system. Figure 3 shows a visualisation of a gradient topology. The position of
each peer in the topology is determined by the peer’s utility.

We have designed and evaluated a self-organising neighbour selection algo-
rithm that generates the gradient topology in a completely decentralised P2P
environment. Each peer p maintains two sets of neighbours, a similarity-based

set, Sp, and a random set, Rp. Peers periodically gossip with each other and
exchange their sets. On receiving both sets from a neighbour, a gossipping peer
selects one entry whose utility level is closest to its own utility and replaces
an entry in its similarity-based set. This behaviour clusters peers with similar
utility characteristics and generates the gradient structure of the topology. In
addition, a gossipping peer randomly selects an entry from the received random
set and replaces a random entry in its random set. Connections to random peers
allow peers to explore the network in order to discover other potentially similar
neighbours. This significantly reduces the possibility of more than one cluster
of high utility peers forming in the network. Random connections also reduce
the possibility of the gradient topology partitioning due to excessive clustering.
Moreover, random connections between peers are used by the aggregation al-
gorithm described in section 4. Peer p removes a random entry from Rp or Sp

Fig. 3. Visualisation of a gradient topology.

if the number of entries in the sets exceeds the maximum allowed number of
connections.

In addition to the neighbour sets, a peer p maintains a cache Up that stores
an estimated utility value, Up(q), for each neighbour q. Entries in the cache are
timestamped and peers exchange these entries whenever they gossip.

Our initial evaluation of the neighbour selection algorithm, described in [23],
shows that the algorithm generates a P2P topology with a very small diame-
ter (an order of 5-6 hops for 100,000 peers) and that it has a global gradient
structure.

The emergence of a gradient topology is a result of the system’s self-organisation.
Peers are independent, have limited knowledge about the system and interact
with a limited number of neighbours. Utility can be considered as a microscopic
property of a peer which enables through peer interaction the construction of
the macroscopic gradient structure.

6 Gradient Search

The gradient structure of the topology allows us to develop an efficient search
heuristic, called gradient search, that enables the discovery of high utility peers
in the system. The algorithm exploits the information contained in the topology
to limit the search space to a relatively small subset of peers and to achieve a
significantly better search performance than traditional search techniques, such
as random walking [24].

The goal of the search algorithm is to deliver a message from any peer in the
system to a super-peer in the core, i.e., to a peer with utility above a certain
threshold. The value of the threshold is assigned by a peer that initiates the
search and is calculated using the utility histogram generated by the aggrega-
tion algorithm described in section 4. The threshold is included in the search
message. A peer below the specified utility threshold forwards search messages
to higher utility peers until a peer is found whose utility is above the threshold.
Each message is associated with a time-to-live (TTL) value that determines the
maximum number of hops the message can be propagated.

In gradient search, each peer greedily forwards messages to its highest utility
neighbour, i.e., to a neighbour q whose utility is equal to

maxx∈Sp∪Rp

(

Up(x)
)

(2)

Thus, messages are forwarded along the utility gradient, as in hill climbing and
other similar techniques. It is important to note that the gradient search strategy
is generally applicable only to a gradient topology. It assumes that a higher utility
peer is closer to the core in terms of the number of hops than a lower utility
peer.

Local maxima should never occur in an idealised gradient topology, how-
ever, every P2P system is under constant churn and the gradient topology may
undergo local perturbations from the idealised structure. In order to prevent
message looping in the presence of such local maxima, a list of visited peers is
appended to each search message, and a constraint is imposed that messages are
never forwarded to already visited peers.

7 Experimental Evaluation

In this section, we describe our experimental setup and present the results of
our experiments. The experiments evaluate the precision of the aggregation al-
gorithm and the performance of gradient search.

The following notation and metrics are used. We measure the average error
in histogram estimation, ErrH , defined as

ErrH(T) =

∑T
t=1

∑N∗

t

p=1
D(H∗

t ,Hp,t)

T · N∗
t

(3)

where N∗
t , Np,t, Max∗

t , Maxp,t, H∗
t and Hp,t correspond to N∗, Np, Max∗,

Maxp, H∗and Hp at time t of the experiment, T is the duration of the experi-
ment, and D is a histogram distance function defined as

D(H∗
t ,Hp,t) =

∑B
i=1

|H∗
t (i) − Hp,t(i)|

∑B
i=1

H∗
t (i)

(4)

Similarly, we define ErrN as the average error in the estimation of N∗
t , and

ErrMax as the average error in the estimation of Max∗
t over the course of the

experiment.

We compare the performance of gradient search with random walking by
measuring two properties of both algorithms. We calculate the average number
of hops in which the algorithms deliver a search message from a random peer
in the network to a super-peer in the core, i.e., to a peer above a certain utility
threshold, and we measure the search failure rate, i.e., the percentage of search
messages that are never delivered to super-peers.

The super-peer utility threshold is determined by each peer individually using
the utility histogram calculated by the aggregation algorithm. A peer, p, sets the
threshold, tp, to a value that corresponds to 1% of highest utility peers. This
value is approximated using the following formula

tp = w · max1≤i≤B(Hp(i) ≥ 0.01 · Np) (5)

where w is the histogram width and B is the number of bins in the histogram.
We evaluate the aggregation and search algorithms in a discrete event simu-

lator. An individual experiment consists of a set of peers, connections between
peers, and messages passed between peers. We assume all peers are mutually
reachable, i.e., any pair of peers can establish a connection. We also assume that
it takes exactly one time step to pass a message between a pair of connected
peers. We do not model network congestion, however, we limit the maximum
number of concurrent connections per peer. In order to reflect network het-
erogeneity, we limit the number of peer connections according to the Pareto
distribution (power law) with an exponent of 1.5 and a mean of 24 connections
per peer.

The simulated P2P network is under constant churn. Every new peer p is
assigned a session duration, sp, according to the Pareto distribution with an ex-
ponent of γ = 1.5 and minimum value smin. Thus, the expected session duration
is given by the formula E(s) = γ smin

γ−1
. We calculate the churn rate as the frac-

tion of peers that leave (or join) the system at one step of the simulation. Over
the lifetime of a running system, the average churn rate, E(c), is equal to the
inverse of the expected peer session time E(s), therefore, in order to simulate a
churn rate, c, in the system, we set smin to

smin =
γ − 1

γ · c
(6)

We assume that 10% of peers leave the system without performing the leave
procedure of the aggregation algorithm (i.e., they crash).

A central bootstrap server is used that stores the addresses of peers that
have most recently joined the network. The list includes “dangling references”
to peers that may have already left the system. Every joining peer receives an
initial random set of 20 neighbours from the bootstrap server. If a peer becomes
isolated from the network (i.e., has no neighbours), it is bootstrapped again.
The bootstrap server executes the aggregation algorithm and provides initial
estimates of N∗, Max∗, and H∗, for peers entering the system.

We start each individual experiment from a network consisting of a single
peer. The number of peers is increased by one percent at each time step, until the

network grows to the size required by the experiment. Afterwards, the network
is still under continuous churn, however, the rate of arrivals is equal to the rate
of departures and the number of peers in the system remains constant. Each
peer continuously performs the neighbour selection and aggregation algorithms
at every time step after it is bootstrapped. Additionally, at each turn, a number
of randomly selected peers emit search messages that are routed using gradient
search or random walking.

For the purpose of the simulation, in all experiments, the number of bins
in the utility histogram is 100 , the aggregation frequency parameter F is 10
(except figure 4), and TTL is set to 3 · log(N) + 10 hops. The utility function of
a peer p with uptime u and d maximum connections with neighbours is defined
as U(p) = d · log(u + 1).

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 1000 2000 3000 4000

N
um

be
r

of
 P

ee
rs

Time Steps

N*
F=100
F=30
F=10

Fig. 4. Average estimation of the number of peers in the system (N) as a function of
time. Three experiments are compared, with the frequency of aggregation (F) set to
100, 30, and 10 time steps.

Figure 4 shows the average precision of N∗ estimation as a function of time
and compares the results obtained for three different values of F . The best
approximation, close to N∗, is obtained for F = 10. Random fluctuations are
visible.

Figure 5 shows the average error of the aggregation algorithm, ErrN , ErrMax,
and ErrH , as a function of the churn rate and as a function of the network size.
The variance is not shown as it is approximately two orders of magnitude lower
than the plotted values. The churn rate is measured as the number of substi-
tuted peers per time step. The estimation of Max∗ is the most precise as the
algorithm for the maximum calculation is simpler compared to the algorithm for
H∗ and N∗ estimation. H∗ approximation is less accurate than N∗ since the his-
togram changes more dynamically than the number of peers. The relative error

 0

 0.2

 0.4

 0.6

 0.8

 1

0 100 200 300 400 500

R
el

at
iv

e
E

st
im

at
io

n
E

rr
or

Substituted Peers per Time Step

N
Max

Histogram

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

100,00080,00060,00040,00020,0000

R
el

at
iv

e
E

st
im

at
io

n
E

rr
or

Number of Peers

N
Max

Histogram

(b)

Fig. 5. Average estimation error of the number of peers in the system (N), maximum
utility (Max), and the utility distribution (Histogram) as a function of peer churn rate
(a) and network size (b).

 0

 10

 20

 30

 40

 50

100,00080,00060,00040,00020,0000

S
ea

rc
h

H
op

 C
ou

nt

Number of Peers

Gradient Search
Random Walk

 0

 0.2

 0.4

 0.6

 0.8

 1

10008006004002000

S
ea

rc
h

F
ai

lu
re

 R
at

e

Substituted Peers per Time Step

Gradient Search
Random Walk

(a)

Fig. 6. Searching for peers above super-peer utility threshold. Gradient search is com-
pared with random walking. Average route length (hop count) of search messages as a
function of the number of peers in the system (a) and average search failure rate as a
function of peer churn rate (b).

as a function of the number of peers is bounded as the number of rounds in the
epoch is proportional to log(N), which corresponds to the theoretical analysis
of Kempe.

Figure 6(a) shows the average hop count of search messages delivered to peers
above the utility threshold as a function of the number of peers in the system.
The hop count is nearly constant since the percentage of high utility peers in
the system is fixed (1% of the system size). Figure 6(b) shows the average failure
rate when searching for peers above the utility threshold as a function of peer
churn rate. Both figures demonstrate superior performance of gradient search
over random walk.

8 Conclusions

In this paper we have shown that the combination of a peer utility metric, ag-
gregation techniques, and gradient topology with gradient searching allows the
discovery of super-peers in peer-to-peer environments. Decentralised aggregation
techniques reduce the uncertainty about the system by approximating peer util-
ity distribution, and enable the decentralised and adaptive calculation of super-
peer utility thresholds. The neighbour selection algorithm used in the gradient
topology allows peers to self-organise themselves and to create a system-level
gradient structure based on a local peer utility metric. The information con-
tained in the topology enables the efficient searching for (super)peers above a
given utility threshold.

References

1. Sen, S., Wong, J.: Analyzing peer-to-peer traffic across large networks. Transac-
tions on Networking 12 (2004) 219–232

2. Gummadi, K.P., Dunn, R.J., Saroiu, S., Gribble, S.D., Levy, H.M., Zahorjan, J.:
Measurement, modeling, and analysis of a peer-to-peer file-sharing workload. In:
Proceedings of Symposium on Operating Systems Principles. (2003) 314–329

3. Leibowitz, N., Ripeanu, M., Wierzbicki, A.: Deconstructing the kazaa network. In:
Proceedings of the 3rd International Workshop on Internet Applications. (2003)
112–120

4. Bhagwan, R., Savage, S., Voelker, G.M.: Understanding availability. In: the 2nd
International Workshop on Peer-to-Peer Systems. (2003)

5. Rhea, S., Geels, D., Roscoe, T., Kubiatowicz, J.: Handling churn in a dht. In:
Proceedings of the USENIX 2004 Annual Technical Conference. (2004) 127–140

6. Yang, B., Garcia-Molina, H.: Designing a super-peer network. In: Proceedings of
the 19th International Conference on Data Engineering. (2003) 49–60

7. Montresor, A.: A robust protocol for building superpeer overlay topologies. In: Pro-
ceedings of the 4th International Conference on Peer-to-Peer Computing. (2004)
202–209

8. Zhao, B.Y., Duan, Y., Huang, L., Joseph, A.D., Kubiatowicz, J.D.: Brocade: Land-
mark routing on overlay networks. In: Proceedings of the 1st International Work-
shop on Peer-to-Peer Systems. (2002) 34–44

9. Mizrak, A.T., Cheng, Y., Kumar, V., Savage, S.: Structured superpeers: Leveraging
heterogeneity to provide constant-time lookup. In: Proceedings of the 3rd IEEE
Workshop on Internet Applications. (2003) 104–111

10. Rao, A., Lakshminarayanan, K., Surana, S., Karp, R., Stoica, I.: Load balancing
in structured p2p systems. In: the 2nd International Workshop on Peer-to-Peer
Systems. (2003)

11. Garcia-Molina, H.: Elections in a distributed computing system. IEEE Transac-
tions on Computers 31(1) (1982) 48–59

12. Robbert van Renesse, K.P.B., Maffeis, S.: Horus, a flexible group communication
system. Communications of the ACM 39(4) (1996) 76–83

13. Yang, B., Garcia-Molina, H.: Improving search in peer-to-peer networks. In: Pro-
ceedings of the 22nd International Conference on Distributed Computing Systems.
(2002) 5–14

14. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: A
scalable peer-to-peer lookup service for internet applications. SIGCOMM Com-
puter Communication Review 31(4) (2001) 149–160

15. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Schenker, S.: A scalable content-
addressable network. In: Proceedings of the Conference on Applications, Technolo-
gies, Trchitectures, and Protocols for Computer Communications. (2001) 161–172

16. Rowstron, A.I.T., Druschel, P.: Pastry: Scalable, decentralized object location, and
routing for large-scale peer-to-peer systems. In: Proceedings of the 18th Interna-
tional Conference on Distributed Systems Platforms. (2001) 329–350

17. Manku, G.S., Bawa, M., Raghavan, P.: Symphony: Distributed hashing in a small
world. In: Proceedings of the 4th USENIX Symposium on Internet Technologies
and Systems. (2003) 127–140

18. Kubiatowicz, J., Bindel, D., Chen, Y., Czerwinski, S., Eaton, P., Geels, D.,
Gummadi, R., Rhea, S., Weatherspoon, H., Weimer, W., Wells, C., Zhao, B.:
Oceanstore: An architecture for global-scale persistent storage. In: Proceedings
of the 9th international Conference on Architectural Support for Programming
Languages and Operating Systems. (2000) 190–201

19. Jelasity, M., Babaoglu, O.: T-man: Gossip-based overlay topology management.
In: the 3rd International Workshop on Engineering Self-Organising Applications.
(2005)

20. Kempe, D., Dobra, A., Gehrke, J.: Gossip-based computation of aggregate infor-
mation. In: Proceedings of the 44th IEEE Symposium on Foundations of Computer
Science. (2003) 482–491

21. Montresor, A., Jelasity, M., Babaoglu, O.: Robust aggregation protocols for large-
scale overlay networks. In: Proceedings of the International Conference on De-
pendable Systems and Networks. (2004) 19–28

22. Jelasity, M., Montresor, A.: Epidemic-style proactive aggregation in large overlay
networks. In: Proceedings of the 24th International Conference on Distributed
Computing Systems. (2004) 102–109

23. Sacha, J., Dowling, J.: A self-organising topology for master-slave replication in p2p
environments. In: Proceedings of the 3rd International Workshop on Databases,
Information Systems and Peer-to-Peer Computing. (2005) 52–64

24. Sacha, J., Dowling, J., Cunningham, R., Meier, R.: Discovery of stable peers in
a self-organising peer-to-peer gradient topology. In: Proceedings of the 6th IFIP
International Conference on Distributed Applications and Interoperable Systems.
Number 4025 in LNCS, Springer-Verlag (2006) 70–83

